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ABSTRACT

Because of the Internet’s phenomenal growth in recent years, computing resources are now 
more widely available. It led to the development of a new computing concept known as 
Cloud Computing, allowing users to share resources such as networks, servers, storage, 
applications, services, software, and data across multiple devices on demand for economical 
and fast. Load balancing is an important branch of cloud computing as it optimizes machine 
utilization by distributing tasks equally over resources. It occurs among physical hosts 
or Virtual Machines in a cloud environment. Round robin is a commonly used algorithm 
in load balancing. RR gives a time quantum for each task and is in circular order. It is 
noted that it suffers from many problems, such as the waste of time and the high cost. In 
the present study, the greedy algorithm was enhanced and implemented to allocate and 
schedule tasks that come to the cloud on Virtual Machines in balance. The task with the 
longest execution time is given to the virtual machine with the least load using an improved 
greedy algorithm. The outcomes demonstrate that the suggested algorithm outperformed 
round robin in makespan. Also, all Virtual Machines in the proposed algorithm finish their 
work simultaneously, whereas round robin is unbalanced. 

Keywords: Cloud computing, cloudSim, greedy algorithm, load balancing, makespan, round robin, Virtual Machine

INTRODUCTION

Computing resources are now more widely 
available, allowing for the development 
of a new computing concept known as 
Cloud computing because of the Internet’s 
phenomenal growth in recent years (Fatima 
et al., 2019). Cloud computing is a kind 
of Internet-based computing that enables 
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clients to share resources, software, and data across various devices on demand (Mishra et 
al., 2018). Generally, the cloud computing platform has three major issues: virtualization, 
distributed framework, and load balance (Kumar et al., 2020).

Virtualization technology improves cloud resource use by making various resources 
available online for customers to purchase on a pay-per-use basis. Physical servers (maybe 
even only one) can be set up and divided into numerous unconnected “virtual servers” 
(PS), each of which functions independently and appears to the user to be a single physical 
device. PSs can be moved in any direction and scaled up or down without causing harm 
to the end user because they are not physically tied (Fatima et al., 2019).

A distributed system is made up of numerous independent computers that communicate 
with one another via a computer network. Computers communicate to reach a common 
aim (Nerkar, 2012). A distributed cloud that connects several geographically dispersed 
and smaller data centers can be a compelling alternative to today’s big, centralized data 
centers. A distributed cloud can reduce communication overheads, prices, and latency by 
providing adjacent processing and storage resources. Improved data locality can also help 
with privacy. Many smaller data centers are installed closer to consumers to complement or 
enhance the bigger mega-data centers under the distributed cloud deployment paradigm, and 
the smaller data centers are administered as a single pooled resource (Coady et al., 2015).

When certain Virtual Machines (VMs) are overloaded with processing duties while 
others are underloaded, the load must be balanced to achieve optimal machine utilization 
(Babu & Krishna, 2013; Kumar & Kumar, 2019). Typically, web traffic, application access, 
databases, and other entities with large loads can use load balancer software to support 
uninterrupted service to Clients.

Load balancing may occur among physical hosts or Virtual Machines in a cloudy 
medium (Kumar & Kumar, 2019).

There are two basic challenges with load balancing:
• Task allocation refers to the distribution of a fixed number of tasks over a large 

number of Physical Machines (PMs), followed by VMs concerning the PMs.
• VMs Relocation Management: The process of moving virtual machines from 

one PMs to another to increase the data center’s resource consumption is called 
Migration (Kumar & Kumar, 2019).

Millions of users share cloud resources by submitting their computing tasks to the cloud 
system. The cloud computing environment faces a hurdle in scheduling these millions of 
tasks. The scheduling of cloud services is divided into two categories: user and system. 
Scheduling at the user level addresses issues arising from service supply between providers 
and customers. Within the data center, resource management is handled through system-
level scheduling (Tawfeek et al., 2013).

Some of the most typical goals of adopting load balancing techniques are reducing 
waiting time, reducing the response time, increasing the utilization of resources, improving 
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reliability, increasing throughput, minimizing turn-around-time, and minimizing makespan 
(Dave & Maheta, 2014).

One of the most common load balancing algorithms used is round robin (RR). Although 
its technique is straightforward and convenient, it has several flaws, including time loss and 
a high cost. It is primarily due to the job being assigned to the incorrect virtual machine, 
which does not consider the task’s size or the requirements of the virtual machine to which 
it is attached. This work aims to enhance and implement a greedy algorithm to allocate 
and schedule tasks to the cloud on balance. The algorithm is compared with what is called 
the RR algorithm. 

Related Works

Caragiannis et al. (2011) investigate two scenarios: selfish load balancing and online 
load balancing. The researchers describe the impact of selfishness and greediness on 
load balancing. They show that anarchy and stability of selfish load balancing have been 
enhanced and tightened. They also constrain the greedy algorithm’s competitiveness for 
online load balancing, where the goal is to reduce latency for all clients on servers. Babu and 
Krishna (2013) proposed an algorithm named honey bee behavior-inspired load balancing 
(HBB-LB). The proposed algorithm balances the priority of tasks on the machines with 
the waiting time. When compared to existing algorithms, they found that the algorithm 
is efficient. The method considerably reduces average execution time and task queue 
waiting time. Ramezani et al. (2014) proposed a “Task-Based System Load Balancing 
with Particle Swarm Optimization” approach for achieving a system load balancing by 
relocating surplus tasks from an overloaded VM instead of migrating the entire overloaded 
VM. This approach significantly reduces the load-balancing process time compared to 
traditional load-balancing systems. It reduced VM downtime and the risk of losing a 
customer’s most recent activity while improving cloud customers’ Quality of Service. A 
unique greedy algorithm was given in Paduraru (2014). The researchers concluded that the 
suggested algorithm outperformed traditional approaches for load balancing algorithms, 
but it had a higher overhead than other well-known methods. Kapoor and Dabas (2015) 
suggested a load-balancing technique based on clusters. The algorithm was tested against 
current and modified throttled algorithms and found superior execution time, response 
time, throughput, and turnaround time.

The ant colony optimization algorithm was compared to alternative cloud scheduling 
algorithms FCFS and round-robin. According to the researchers, the ant colony optimization 
surpassed the FCFS and round-robin algorithms. Awad et al. (2015) announced that their 
proposed Load Balancing Mutation a Particle Swarm Optimization (LBMPSO) approach 
was compared to three algorithms: random algorithm, standard PSO, and Longest Cloudlet 
to Fastest Processor (LCFP). According to them, the comparison shows that LBMPSO 
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outperformed those algorithms in terms of execution time, makespan, transmission cost, and 
round trip time. Devi and Uthariaraj (2016) proposed the firefly algorithm, which reduced 
the time it took to execute the submitted jobs. The proposed approach takes less time to 
execute than First Come First Served (FCFS). Lu et al. (2016) introduced a hybrid scheduling 
algorithm DCBT algorithm for load balancing in a distributed environment by merging the 
methodologies of “Divide-and-Conquer” and “Throttled” algorithms. The researchers defined 
two situations. The DCBT method was utilized in both situations to schedule incoming client 
requests to the available virtual machines based on the load on each machine. 

The suggested DCBT uses virtual machines better while lowering task execution time. 
In Mohanty et al. (2017), researchers proposed a metaheuristic load-balancing approach 
employing Particle Swarm Optimization (MPSO). The proposed method tries to reduce 
task overhead while maximizing resource utilization. Performance comparisons are 
done with the genetic algorithm and other algorithms on multiple parameters, including 
makespan calculation and resource utilization. The proposed method outperforms previous 
approaches. The imbalance of the load in System Wide Information Management (SWIM) 
task scheduling is the focus of Li and Wu (2019). A load balancing-based SWIM ant 
colony task scheduling method (ACTS-LB) is given in that study. The ACTS-LB algorithm 
outperforms the standard min-min strategy, the ACO algorithm, and the particle swarm 
optimization (PSO) algorithm in experimental simulations. It not only speeds up job 
execution and makes better use of system resources, but it also keeps SWIM in a more load-
balanced state. According to Kruekaew and Kimpan (2020), virtual machine scheduling 
management using the “artificial bee colony” (ABC) algorithm and the largest job first 
(HABC LJF) surpassed ACO, PSO, and IPSO. The results demonstrate that the HABC 
with the Largest Job First (HABC LJF) heuristic method performs the best in scheduling 
and load balancing. Sinha and Sinha (2020) developed a load-balancing algorithm for 
effective resource usage and compared the performance of the proposed algorithms to 
those of well-known load-balancing algorithms. Compared to the RR, Throttled, ACO, 
and Hybrid approaches, the EWRR method has less response time.

Singh et al. (2021) employed the Crow intelligent algorithm to distribute tasks among 
VMs. They evaluated the effectiveness of their method using the CloudSim simulator. 32 GB 
of Memory and a 1 TB hard drive were employed in 16 virtual machines. They discovered 
that their system reached an ideal state after a limited number of rounds. Kruekaew and 
Kimpan (2022) employed the ABC algorithm to improve load balancing and resource 
utilization. For their performance analysis, they employed CloudSim. Using CloudSim, 
they compare their results utilizing FCFS, MOPSO (Multi-Objective Particle Swarm 
Optimization), and MOCS with random data sets. Replication improved the performance 
of cloud services, according to Javadpour et al. (2023), on one or more virtual machines, 
they found a solution by choosing and eliminating the VMs whose storage capacity was 
overcrowded when a VM was requested by more than one user yet needed storage space. 
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The CloudSim simulator was employed. A greedy algorithm was used for balancing, but 
the sorting in the algorithm needs time, especially when the job list is very long. So, an 
enhanced version of Greedy is used in this research.

METHOD 

“CloudSim” is a cloud computing simulation program developed in the CLOUDS 
laboratory at the “University of Melbourne.” It allows users to assess individual system 
concerns without taking into account the low-level details of cloud-based infrastructures 
and services (Ahmad & Khan, 2019).

CloudSim is an open-source platform for simulating cloud computing services and 
infrastructure. It enables users to repeatedly test applications under their control, detect 
system bottlenecks without using real clouds, and experiment with different configurations 
to build adaptive provisioning ways.

Figure 1. The architecture of CloudSim (Goyal et al., 2012). Adapted from https://doi.org/10.1016/j.
proeng.2012.06.412

Cloud 
Scenario

Cloud 
Scenario

User 
requirement ……

User or data center broker

Cloudlet Virtual Machine 
(VM)

Cloudlet 
execution

VM 
management

VM 
provisioning

CPU 
allocation

Memory 
allocation

Storage 
allocation

Bandwidth 
allocation

Events 
handling Sensor

Cloud 
coordinator Data center

Network 
topology

Message delay 
calculation

CloudSim Core Simulation Engine

User Code
Simulation 

specification

Scheduling 
policy

CloudSim
User interface 

structure

VM services

Cloud services

Cloud 
resources

Network

Cloud 
scenario

Cloud 
scenario



118 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

Version 3.0.1 is utilized in this study. Figure 1 depicts the CloudSim Simulation 
architecture (Goyal et al., 2012). The simulation layer includes specialized management 
interfaces for virtual machines, memory, storage, and bandwidth, as well as support for 
modeling and simulation of virtualized Cloud-based data center infrastructures.

This layer deals with the basics, such as assigning hosts to virtual machines, managing 
application execution, and keeping track of the system’s dynamics (Wang & Wu, 2009). 
The “User Code” is the top layer of the CloudSim simulation toolkit, and it is the major 
interface for configuring simulation specifications and characteristics, including the number 
of machines, apps, jobs, users, and scheduling regulations, as well as their basic structure 
(Sinha & Shekhar, 2015).

Figure 2 depicts the basic scenario of the CloudSim simulation. Each component of 
CloudSim is described in depth in this scenario: Data centers (DC) offer resources such as 
multiple hosts. A host is a hardware machine that can host many virtual machines. A virtual 
machine (VM) is a piece of logical hardware on which the cloudlet will run. Broker has 
data center capabilities, which allows it to send virtual machines to the appropriate host. 
The “Cloud Information Service (CIS)” is in charge of locating resources, indexing them, 
and calculating the efficiency of data centers (Ahmad & Khan, 2019).

Results can be presented in figures, graphs, tables, and others that make the reader 
understand easily (Kapoor & Dabas, 2015; Saura et al., 2019). The discussion can be made 
in several sub-sections.

Two scheduling policies are available in CloudSim: Cloudlet scheduler policies and 
VMs scheduler policies (Ahmad & Khan, 2019). A greedy algorithm is used in this research 
to enhance the cloudlet scheduler and obtain a balanced load.

Figure 2. Scenario of CloudSim simulation (Ahmad & Khan, 2019). Adapted from https://doi.org/10.35940/
ijrte.B3669.078219
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As mentioned before, the current version of the Greedy algorithm needs sorting. It is 
better to take only the MAX and Min. It will decrease the overhead of the algorithm. The 
Greedy method proposes allocating the most time-consuming and difficult work to the 
more efficient virtual machine. i.e., VM with the least load, to rapidly do complicated and 
tough jobs and reduce the overall system’s execution time and makespan.

Makespan refers to the duration of a user’s task scheduling. Its value is expressed by the 
time from the start of the first task to the end of the last task’s execution. The performance 
criteria values were calculated using Equations 1, 2, and 3.

• Makespan for the entire system

Makespan= Max (FTij)      [1]

Such as FTij finishing (ending) time for task Ti. Consider the start time is 0.
• The total capacity of all Virtual machines:

𝐶𝐶 = �𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣

𝑣𝑣=1

        [2]

Where C represents the combined capacity of all VMs, the capacity of each virtual 
machine, or Cvm, is determined using Equation 3.

Cvm = Penum * Pemips       [3]

The number of processing elements (Pe) in VM is called Penum.
The million instructions per second that Pe can execute are known as Pemips.
Following is the Pseudo code of the greedy algorithm: 

Input:  No. of tasks, No. of VMs.
Output: assigning tasks to VMs, system makespan.
Begin

While the tasks’ queue  is not empty Do   
Choose Task T(i) that has the biggest execution time
Choose VM (j) with Minimum load  
Allocate the task T(i) to Vm(j)  

End While
Calculate the finishing time for all VMs
Calculate the makespan for all the systems. 

End

RESULTS AND DISCUSSION

It is contrasted to the popular RR method, which is typically employed for load balancing 
to improve the performance of the proposed algorithm. The mentioned algorithms in 
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the related work are not available to us. So, it is impossible to compare with them. The 
lengths of tasks generated by the random built-in function are presented in Figure 3. The 
random is chosen because the jobs could arrive at the cloud in any size. The job size is 
considered in seconds. Cloudsim is used for the simulation of the cloud. The Cloudsim 
configurations listed below are considered: four VMs are employed for the experiments. 
The specs are the same for all VMs. As a result, the experiment concentrated on the 
algorithm rather than the VM requirements. Each virtual machine operates on 250 
MIPS, 512 MB of RAM, and 1000 Mbps (Million Byte per second) of bandwidth to run. 
Indeed, the experiments to test the suggested algorithm use this setting as an example. 
Ten times, starting at 50 tasks and going up by 50 tasks each time, the experiment is run 

Figure 3. Random execution time
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Table 1 
A snapshot of greedy output result for 4 VMs 

Cloudlet 
ID

VM 
ID

Time 
of task 
(sec)

Start 
time 
(sec)

Finish 
time 
(sec) 

6 1 8 0.1 8.1
3 2 12 0.1 12.1
8 1 24 8.1 32.1
0 0 40 0.1 40.1
2 0 8 40.1 48.1
1 3 60 0.1 60.1
5 2 52 12.1 64.1
7 0 36 48.1 84.1
4 3 32 60.1 92.1
11 0 12 84.1 96.1
9 3 4 92.1 96.1

until it reaches 500 tasks. It will change 
the system’s load and allow researchers to 
assess how it affects its makespan. Table 1 
shows how jobs were completed using the 
suggested Greedy method. The beginning 
and ending times of each task, as well as 
the virtual machine on which it is running. 
It is independent of task sequencing and 
instead uses task length to place it on a 
virtual machine with minimal load.

For each number of tasks, the finishing 
time of every VM and the overall makespan 
of the system is calculated. The results of 
both algorithms are shown in Table 2. As 
seen in the suggested algorithm, every VM 
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completes its work in a balanced manner (with more or less). However, the difference 
in the VMs’ completion times is evident in RR.

A comparison of the makespan of all systems utilizing RR and the suggested technique 
is shown in Figure 4. The system’s makespan is shorter when using the suggested approach 
than when utilizing RR. The reason for that is that when the number of tasks increases, 
there will be a higher probability of the arrival of different sizes of tasks, which in turn 
improves the selection and gives a better chance to achieve convergent makespan. This 
behavior differs from traditional RR, which makes no selection but chooses the task from 
the front of the task queue.

Table 2 
VMs finishing times and makespan for both algorithms

Greedy
VMs finishing time (sec)

RR
VMs finishing time (sec) Makespan (sec)

No. 
of 

Task
VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4 Makespan 

G
Makespan 

R.R.

50 596.1 596.1 596.1 600.1 652.1 604.1 656.1 476.1 600.1 656.1
100 1408.1 1408.1 1412.1 1412.1 1616.1 1448.1 1204.1 1372.1 1412.1 1616.1
150 2156.1 2156.1 2156.1 2156.1 2120.1 2160.1 1948.1 2396.1 2156.1 2396.1
200 2920.1 2920.1 2920.1 2920.1 2940.1 2864.1 3156.1 2720.1 2920.1 3156.1
250 3672.1 3672.1 3672.1 3672.1 3604.1 3568.1 3856.1 3660.1 3672.1 3856.1
300 4072.1 4076.1 4076.1 4076.1 3964.1 4188.1 4040.1 4108.1 4076.1 4188.1
350 5172.1 5172.1 5172.1 5172.1 5228.1 5260.1 5276.1 4924.1 5172.1 5276.1
400 5824.1 5824.1 5828.1 5828.1 6276.1 5548.1 5720.1 5760.1 5828.1 6276.1
450 6324.1 6328.1 6328.1 6328.1 6208.1 6344.1 6432.1 6324.1 6328.1 6432.1
500 7324.1 7324.1 7328.1 7328.1 6912.1 7888.1 7344.1 7160.1 7328.1 7888.1

Figure 4. Makespan for different no. of tasks for round robin and proposed greedy algorithm 
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Figure 5 shows that all VMs in RR finish their jobs at various times. Whereas in greedy, 
VMs finish jobs nearly simultaneously (Figure 6). The greedy allocator takes the initial 
step in load balancing by assigning the task to the VM with the lowest load.

According to Table 3 and Figure 7, the improved greedy algorithm’s standard deviation 
of the finishing values spans from 0 to 2.309401, whereas the RR algorithm’s standard 
deviation ranges from 84.0555372 to 414.3750314. They also demonstrate no correlation 
between the number of tasks and the standard deviation of the VMs’ completion values.

Figure 6. Balanced Virtual Machines’ (VM) finishing time in greedy algorithm

Table 3
Enhanced greedy and round robin algorithm standard deviation

No. of tasks 50 100 150 200 250 300 350 400 450 500
STDEV Greedy 2.00 2.31 0.00 0.00 0.00 2.00 0.00 2.31 2.00 2.31
STDEV RR 84.06 171.04 184.55 181.87 128.37 95.58 166.53 313.78 92.17 414.38
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Figure 5. Unbalanced Virtual Machines’ (VM) finishing time in round robin (RR)
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CONCLUSION 

The present research proposes an enhanced version of a Greedy algorithm to allocate tasks 
in the cloud. When the request arrives at the data center, deciding which VM is the most 
suitable to execute it is necessary. A greedy algorithm will help to make this choice to 
achieve load balancing. There is no need for migration since the chosen VM will satisfy its 
constraints. The algorithm was compared to RR, and the results showed that the makespan 
of the system using Greedy is less than its equivalent using RR. Also, all VMs in Greedy 
finish their work simultaneously, whereas RR VMs vary in finishing time, leading to an 
unbalanced system load.
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