
Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 25 October 2022
Accepted: 14 June 2023
Published: 24 November 2023

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.32.1.07

E-mail addresses:
hanaosman@uomosul.edu.iq (Hanaa Osman)
asmahammo@uomosul.edu.iq (Asma’a Yassin Hammo)
abdulnasir.younus@uomosul.edu.iq (Abdulnasir Younus Ahmad)
* Corresponding author

Use of Enhanced Greedy Algorithm for Load Balancing in
Cloud Computing

Hanaa Osman1, Asma’a Yassin Hammo1 and Abdulnasir Younus Ahmad2*
1Computer Science and Mathematics, University of Mosul, 259 AL-Majmoaa St., Mosul, Nineveh, Iraq
2Education for Pure Science, University of Mosul, 259 AL-Majmoaa St., Mosul, Nineveh, Iraq

ABSTRACT

Because of the Internet’s phenomenal growth in recent years, computing resources are now
more widely available. It led to the development of a new computing concept known as
Cloud Computing, allowing users to share resources such as networks, servers, storage,
applications, services, software, and data across multiple devices on demand for economical
and fast. Load balancing is an important branch of cloud computing as it optimizes machine
utilization by distributing tasks equally over resources. It occurs among physical hosts
or Virtual Machines in a cloud environment. Round robin is a commonly used algorithm
in load balancing. RR gives a time quantum for each task and is in circular order. It is
noted that it suffers from many problems, such as the waste of time and the high cost. In
the present study, the greedy algorithm was enhanced and implemented to allocate and
schedule tasks that come to the cloud on Virtual Machines in balance. The task with the
longest execution time is given to the virtual machine with the least load using an improved
greedy algorithm. The outcomes demonstrate that the suggested algorithm outperformed
round robin in makespan. Also, all Virtual Machines in the proposed algorithm finish their
work simultaneously, whereas round robin is unbalanced.

Keywords: Cloud computing, cloudSim, greedy algorithm, load balancing, makespan, round robin, Virtual Machine

INTRODUCTION

Computing resources are now more widely
available, allowing for the development
of a new computing concept known as
Cloud computing because of the Internet’s
phenomenal growth in recent years (Fatima
et al., 2019). Cloud computing is a kind
of Internet-based computing that enables

114 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

clients to share resources, software, and data across various devices on demand (Mishra et
al., 2018). Generally, the cloud computing platform has three major issues: virtualization,
distributed framework, and load balance (Kumar et al., 2020).

Virtualization technology improves cloud resource use by making various resources
available online for customers to purchase on a pay-per-use basis. Physical servers (maybe
even only one) can be set up and divided into numerous unconnected “virtual servers”
(PS), each of which functions independently and appears to the user to be a single physical
device. PSs can be moved in any direction and scaled up or down without causing harm
to the end user because they are not physically tied (Fatima et al., 2019).

A distributed system is made up of numerous independent computers that communicate
with one another via a computer network. Computers communicate to reach a common
aim (Nerkar, 2012). A distributed cloud that connects several geographically dispersed
and smaller data centers can be a compelling alternative to today’s big, centralized data
centers. A distributed cloud can reduce communication overheads, prices, and latency by
providing adjacent processing and storage resources. Improved data locality can also help
with privacy. Many smaller data centers are installed closer to consumers to complement or
enhance the bigger mega-data centers under the distributed cloud deployment paradigm, and
the smaller data centers are administered as a single pooled resource (Coady et al., 2015).

When certain Virtual Machines (VMs) are overloaded with processing duties while
others are underloaded, the load must be balanced to achieve optimal machine utilization
(Babu & Krishna, 2013; Kumar & Kumar, 2019). Typically, web traffic, application access,
databases, and other entities with large loads can use load balancer software to support
uninterrupted service to Clients.

Load balancing may occur among physical hosts or Virtual Machines in a cloudy
medium (Kumar & Kumar, 2019).

There are two basic challenges with load balancing:
• Task allocation refers to the distribution of a fixed number of tasks over a large

number of Physical Machines (PMs), followed by VMs concerning the PMs.
• VMs Relocation Management: The process of moving virtual machines from

one PMs to another to increase the data center’s resource consumption is called
Migration (Kumar & Kumar, 2019).

Millions of users share cloud resources by submitting their computing tasks to the cloud
system. The cloud computing environment faces a hurdle in scheduling these millions of
tasks. The scheduling of cloud services is divided into two categories: user and system.
Scheduling at the user level addresses issues arising from service supply between providers
and customers. Within the data center, resource management is handled through system-
level scheduling (Tawfeek et al., 2013).

Some of the most typical goals of adopting load balancing techniques are reducing
waiting time, reducing the response time, increasing the utilization of resources, improving

115Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

An Enhanced Greedy Algorithm for Load Balancing

reliability, increasing throughput, minimizing turn-around-time, and minimizing makespan
(Dave & Maheta, 2014).

One of the most common load balancing algorithms used is round robin (RR). Although
its technique is straightforward and convenient, it has several flaws, including time loss and
a high cost. It is primarily due to the job being assigned to the incorrect virtual machine,
which does not consider the task’s size or the requirements of the virtual machine to which
it is attached. This work aims to enhance and implement a greedy algorithm to allocate
and schedule tasks to the cloud on balance. The algorithm is compared with what is called
the RR algorithm.

Related Works

Caragiannis et al. (2011) investigate two scenarios: selfish load balancing and online
load balancing. The researchers describe the impact of selfishness and greediness on
load balancing. They show that anarchy and stability of selfish load balancing have been
enhanced and tightened. They also constrain the greedy algorithm’s competitiveness for
online load balancing, where the goal is to reduce latency for all clients on servers. Babu and
Krishna (2013) proposed an algorithm named honey bee behavior-inspired load balancing
(HBB-LB). The proposed algorithm balances the priority of tasks on the machines with
the waiting time. When compared to existing algorithms, they found that the algorithm
is efficient. The method considerably reduces average execution time and task queue
waiting time. Ramezani et al. (2014) proposed a “Task-Based System Load Balancing
with Particle Swarm Optimization” approach for achieving a system load balancing by
relocating surplus tasks from an overloaded VM instead of migrating the entire overloaded
VM. This approach significantly reduces the load-balancing process time compared to
traditional load-balancing systems. It reduced VM downtime and the risk of losing a
customer’s most recent activity while improving cloud customers’ Quality of Service. A
unique greedy algorithm was given in Paduraru (2014). The researchers concluded that the
suggested algorithm outperformed traditional approaches for load balancing algorithms,
but it had a higher overhead than other well-known methods. Kapoor and Dabas (2015)
suggested a load-balancing technique based on clusters. The algorithm was tested against
current and modified throttled algorithms and found superior execution time, response
time, throughput, and turnaround time.

The ant colony optimization algorithm was compared to alternative cloud scheduling
algorithms FCFS and round-robin. According to the researchers, the ant colony optimization
surpassed the FCFS and round-robin algorithms. Awad et al. (2015) announced that their
proposed Load Balancing Mutation a Particle Swarm Optimization (LBMPSO) approach
was compared to three algorithms: random algorithm, standard PSO, and Longest Cloudlet
to Fastest Processor (LCFP). According to them, the comparison shows that LBMPSO

116 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

outperformed those algorithms in terms of execution time, makespan, transmission cost, and
round trip time. Devi and Uthariaraj (2016) proposed the firefly algorithm, which reduced
the time it took to execute the submitted jobs. The proposed approach takes less time to
execute than First Come First Served (FCFS). Lu et al. (2016) introduced a hybrid scheduling
algorithm DCBT algorithm for load balancing in a distributed environment by merging the
methodologies of “Divide-and-Conquer” and “Throttled” algorithms. The researchers defined
two situations. The DCBT method was utilized in both situations to schedule incoming client
requests to the available virtual machines based on the load on each machine.

The suggested DCBT uses virtual machines better while lowering task execution time.
In Mohanty et al. (2017), researchers proposed a metaheuristic load-balancing approach
employing Particle Swarm Optimization (MPSO). The proposed method tries to reduce
task overhead while maximizing resource utilization. Performance comparisons are
done with the genetic algorithm and other algorithms on multiple parameters, including
makespan calculation and resource utilization. The proposed method outperforms previous
approaches. The imbalance of the load in System Wide Information Management (SWIM)
task scheduling is the focus of Li and Wu (2019). A load balancing-based SWIM ant
colony task scheduling method (ACTS-LB) is given in that study. The ACTS-LB algorithm
outperforms the standard min-min strategy, the ACO algorithm, and the particle swarm
optimization (PSO) algorithm in experimental simulations. It not only speeds up job
execution and makes better use of system resources, but it also keeps SWIM in a more load-
balanced state. According to Kruekaew and Kimpan (2020), virtual machine scheduling
management using the “artificial bee colony” (ABC) algorithm and the largest job first
(HABC LJF) surpassed ACO, PSO, and IPSO. The results demonstrate that the HABC
with the Largest Job First (HABC LJF) heuristic method performs the best in scheduling
and load balancing. Sinha and Sinha (2020) developed a load-balancing algorithm for
effective resource usage and compared the performance of the proposed algorithms to
those of well-known load-balancing algorithms. Compared to the RR, Throttled, ACO,
and Hybrid approaches, the EWRR method has less response time.

Singh et al. (2021) employed the Crow intelligent algorithm to distribute tasks among
VMs. They evaluated the effectiveness of their method using the CloudSim simulator. 32 GB
of Memory and a 1 TB hard drive were employed in 16 virtual machines. They discovered
that their system reached an ideal state after a limited number of rounds. Kruekaew and
Kimpan (2022) employed the ABC algorithm to improve load balancing and resource
utilization. For their performance analysis, they employed CloudSim. Using CloudSim,
they compare their results utilizing FCFS, MOPSO (Multi-Objective Particle Swarm
Optimization), and MOCS with random data sets. Replication improved the performance
of cloud services, according to Javadpour et al. (2023), on one or more virtual machines,
they found a solution by choosing and eliminating the VMs whose storage capacity was
overcrowded when a VM was requested by more than one user yet needed storage space.

117Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

An Enhanced Greedy Algorithm for Load Balancing

The CloudSim simulator was employed. A greedy algorithm was used for balancing, but
the sorting in the algorithm needs time, especially when the job list is very long. So, an
enhanced version of Greedy is used in this research.

METHOD

“CloudSim” is a cloud computing simulation program developed in the CLOUDS
laboratory at the “University of Melbourne.” It allows users to assess individual system
concerns without taking into account the low-level details of cloud-based infrastructures
and services (Ahmad & Khan, 2019).

CloudSim is an open-source platform for simulating cloud computing services and
infrastructure. It enables users to repeatedly test applications under their control, detect
system bottlenecks without using real clouds, and experiment with different configurations
to build adaptive provisioning ways.

Figure 1. The architecture of CloudSim (Goyal et al., 2012). Adapted from https://doi.org/10.1016/j.
proeng.2012.06.412

Cloud
Scenario

Cloud
Scenario

User
requirement ……

User or data center broker

Cloudlet Virtual Machine
(VM)

Cloudlet
execution

VM
management

VM
provisioning

CPU
allocation

Memory
allocation

Storage
allocation

Bandwidth
allocation

Events
handling Sensor

Cloud
coordinator Data center

Network
topology

Message delay
calculation

CloudSim Core Simulation Engine

User Code
Simulation

specification

Scheduling
policy

CloudSim
User interface

structure

VM services

Cloud services

Cloud
resources

Network

Cloud
scenario

Cloud
scenario

118 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

Version 3.0.1 is utilized in this study. Figure 1 depicts the CloudSim Simulation
architecture (Goyal et al., 2012). The simulation layer includes specialized management
interfaces for virtual machines, memory, storage, and bandwidth, as well as support for
modeling and simulation of virtualized Cloud-based data center infrastructures.

This layer deals with the basics, such as assigning hosts to virtual machines, managing
application execution, and keeping track of the system’s dynamics (Wang & Wu, 2009).
The “User Code” is the top layer of the CloudSim simulation toolkit, and it is the major
interface for configuring simulation specifications and characteristics, including the number
of machines, apps, jobs, users, and scheduling regulations, as well as their basic structure
(Sinha & Shekhar, 2015).

Figure 2 depicts the basic scenario of the CloudSim simulation. Each component of
CloudSim is described in depth in this scenario: Data centers (DC) offer resources such as
multiple hosts. A host is a hardware machine that can host many virtual machines. A virtual
machine (VM) is a piece of logical hardware on which the cloudlet will run. Broker has
data center capabilities, which allows it to send virtual machines to the appropriate host.
The “Cloud Information Service (CIS)” is in charge of locating resources, indexing them,
and calculating the efficiency of data centers (Ahmad & Khan, 2019).

Results can be presented in figures, graphs, tables, and others that make the reader
understand easily (Kapoor & Dabas, 2015; Saura et al., 2019). The discussion can be made
in several sub-sections.

Two scheduling policies are available in CloudSim: Cloudlet scheduler policies and
VMs scheduler policies (Ahmad & Khan, 2019). A greedy algorithm is used in this research
to enhance the cloudlet scheduler and obtain a balanced load.

Figure 2. Scenario of CloudSim simulation (Ahmad & Khan, 2019). Adapted from https://doi.org/10.35940/
ijrte.B3669.078219

Cloud information service Cloudlet(s)

Broker

SendCloudletTo

RequestResourceTo SubmittedTo
RegisterTo

Datacenter

Host
VM1 VM2 VM3
CL1 CL1 CL1
CL2 CL1 CL2
____ ____ ____

CLa CLa CLa

119Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

An Enhanced Greedy Algorithm for Load Balancing

As mentioned before, the current version of the Greedy algorithm needs sorting. It is
better to take only the MAX and Min. It will decrease the overhead of the algorithm. The
Greedy method proposes allocating the most time-consuming and difficult work to the
more efficient virtual machine. i.e., VM with the least load, to rapidly do complicated and
tough jobs and reduce the overall system’s execution time and makespan.

Makespan refers to the duration of a user’s task scheduling. Its value is expressed by the
time from the start of the first task to the end of the last task’s execution. The performance
criteria values were calculated using Equations 1, 2, and 3.

• Makespan for the entire system

Makespan= Max (FTij) [1]

Such as FTij finishing (ending) time for task Ti. Consider the start time is 0.
• The total capacity of all Virtual machines:

𝐶𝐶 = �𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣

𝑣𝑣=1

 [2]

Where C represents the combined capacity of all VMs, the capacity of each virtual
machine, or Cvm, is determined using Equation 3.

Cvm = Penum * Pemips [3]

The number of processing elements (Pe) in VM is called Penum.
The million instructions per second that Pe can execute are known as Pemips.
Following is the Pseudo code of the greedy algorithm:

Input: No. of tasks, No. of VMs.
Output: assigning tasks to VMs, system makespan.
Begin

While the tasks’ queue is not empty Do
Choose Task T(i) that has the biggest execution time
Choose VM (j) with Minimum load
Allocate the task T(i) to Vm(j)

End While
Calculate the finishing time for all VMs
Calculate the makespan for all the systems.

End

RESULTS AND DISCUSSION

It is contrasted to the popular RR method, which is typically employed for load balancing
to improve the performance of the proposed algorithm. The mentioned algorithms in

120 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

the related work are not available to us. So, it is impossible to compare with them. The
lengths of tasks generated by the random built-in function are presented in Figure 3. The
random is chosen because the jobs could arrive at the cloud in any size. The job size is
considered in seconds. Cloudsim is used for the simulation of the cloud. The Cloudsim
configurations listed below are considered: four VMs are employed for the experiments.
The specs are the same for all VMs. As a result, the experiment concentrated on the
algorithm rather than the VM requirements. Each virtual machine operates on 250
MIPS, 512 MB of RAM, and 1000 Mbps (Million Byte per second) of bandwidth to run.
Indeed, the experiments to test the suggested algorithm use this setting as an example.
Ten times, starting at 50 tasks and going up by 50 tasks each time, the experiment is run

Figure 3. Random execution time

Ex
ec

ut
io

n
tim

e
(s

ec
)

30

25

20

15

10

5

0

Random
execution
time

 0 100 200 300 400 500
Task number

Table 1
A snapshot of greedy output result for 4 VMs

Cloudlet
ID

VM
ID

Time
of task
(sec)

Start
time
(sec)

Finish
time
(sec)

6 1 8 0.1 8.1
3 2 12 0.1 12.1
8 1 24 8.1 32.1
0 0 40 0.1 40.1
2 0 8 40.1 48.1
1 3 60 0.1 60.1
5 2 52 12.1 64.1
7 0 36 48.1 84.1
4 3 32 60.1 92.1
11 0 12 84.1 96.1
9 3 4 92.1 96.1

until it reaches 500 tasks. It will change
the system’s load and allow researchers to
assess how it affects its makespan. Table 1
shows how jobs were completed using the
suggested Greedy method. The beginning
and ending times of each task, as well as
the virtual machine on which it is running.
It is independent of task sequencing and
instead uses task length to place it on a
virtual machine with minimal load.

For each number of tasks, the finishing
time of every VM and the overall makespan
of the system is calculated. The results of
both algorithms are shown in Table 2. As
seen in the suggested algorithm, every VM

121Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

An Enhanced Greedy Algorithm for Load Balancing

completes its work in a balanced manner (with more or less). However, the difference
in the VMs’ completion times is evident in RR.

A comparison of the makespan of all systems utilizing RR and the suggested technique
is shown in Figure 4. The system’s makespan is shorter when using the suggested approach
than when utilizing RR. The reason for that is that when the number of tasks increases,
there will be a higher probability of the arrival of different sizes of tasks, which in turn
improves the selection and gives a better chance to achieve convergent makespan. This
behavior differs from traditional RR, which makes no selection but chooses the task from
the front of the task queue.

Table 2
VMs finishing times and makespan for both algorithms

Greedy
VMs finishing time (sec)

RR
VMs finishing time (sec) Makespan (sec)

No.
of

Task
VM 1 VM 2 VM 3 VM 4 VM 1 VM 2 VM 3 VM 4 Makespan

G
Makespan

R.R.

50 596.1 596.1 596.1 600.1 652.1 604.1 656.1 476.1 600.1 656.1
100 1408.1 1408.1 1412.1 1412.1 1616.1 1448.1 1204.1 1372.1 1412.1 1616.1
150 2156.1 2156.1 2156.1 2156.1 2120.1 2160.1 1948.1 2396.1 2156.1 2396.1
200 2920.1 2920.1 2920.1 2920.1 2940.1 2864.1 3156.1 2720.1 2920.1 3156.1
250 3672.1 3672.1 3672.1 3672.1 3604.1 3568.1 3856.1 3660.1 3672.1 3856.1
300 4072.1 4076.1 4076.1 4076.1 3964.1 4188.1 4040.1 4108.1 4076.1 4188.1
350 5172.1 5172.1 5172.1 5172.1 5228.1 5260.1 5276.1 4924.1 5172.1 5276.1
400 5824.1 5824.1 5828.1 5828.1 6276.1 5548.1 5720.1 5760.1 5828.1 6276.1
450 6324.1 6328.1 6328.1 6328.1 6208.1 6344.1 6432.1 6324.1 6328.1 6432.1
500 7324.1 7324.1 7328.1 7328.1 6912.1 7888.1 7344.1 7160.1 7328.1 7888.1

Figure 4. Makespan for different no. of tasks for round robin and proposed greedy algorithm

8000

7000

6000

5000

4000

3000

2000

1000

0

Proposed
greedy
Round robin

 50 100 150 200 250 300 350 400 450 500
Task number

M
ak

es
pa

n
(s

ec
)

122 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

Figure 5 shows that all VMs in RR finish their jobs at various times. Whereas in greedy,
VMs finish jobs nearly simultaneously (Figure 6). The greedy allocator takes the initial
step in load balancing by assigning the task to the VM with the lowest load.

According to Table 3 and Figure 7, the improved greedy algorithm’s standard deviation
of the finishing values spans from 0 to 2.309401, whereas the RR algorithm’s standard
deviation ranges from 84.0555372 to 414.3750314. They also demonstrate no correlation
between the number of tasks and the standard deviation of the VMs’ completion values.

Figure 6. Balanced Virtual Machines’ (VM) finishing time in greedy algorithm

Table 3
Enhanced greedy and round robin algorithm standard deviation

No. of tasks 50 100 150 200 250 300 350 400 450 500
STDEV Greedy 2.00 2.31 0.00 0.00 0.00 2.00 0.00 2.31 2.00 2.31
STDEV RR 84.06 171.04 184.55 181.87 128.37 95.58 166.53 313.78 92.17 414.38

8000

7000

6000

5000

4000

3000

2000

1000

0

RR VM1
RR VM2
RR VM3
RR VM 4

 50 100 150 200 250 300 350 400 450 500
Number of task

Fi
ni

sh
in

g
tim

e
(s

ec
)

Figure 5. Unbalanced Virtual Machines’ (VM) finishing time in round robin (RR)

8000

7000

6000

5000

4000

3000

2000

1000

0

Proposed greed VM1
Proposed greed VM2
Proposed greed VM3
Proposed greed VM4

 50 100 150 200 250 300 350 400 450 500
Number of task

Fi
ni

sh
in

g
tim

e
(s

ec
)

123Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

An Enhanced Greedy Algorithm for Load Balancing

CONCLUSION

The present research proposes an enhanced version of a Greedy algorithm to allocate tasks
in the cloud. When the request arrives at the data center, deciding which VM is the most
suitable to execute it is necessary. A greedy algorithm will help to make this choice to
achieve load balancing. There is no need for migration since the chosen VM will satisfy its
constraints. The algorithm was compared to RR, and the results showed that the makespan
of the system using Greedy is less than its equivalent using RR. Also, all VMs in Greedy
finish their work simultaneously, whereas RR VMs vary in finishing time, leading to an
unbalanced system load.

ACKNOWLEDGMENTS

The authors appreciate the cooperation of the University of Mosul, Iraq, in completing
the experimental work.

REFERENCES
Ahmad, M. O., & Khan, R. Z. (2019). Cloud computing modeling and simulation using cloudsim environment.

International Journal of Recent Technology and Engineering, 8(2), 5439-5445. https://doi.org/10.35940/
ijrte.B3669.078219

Awad, A. I., El-Hefnawy, N. A., & Abdel-Kader, H. M. (2015). Enhanced particle swarm optimization for
task scheduling in cloud computing environments. Procedia Computer Science, 65, 920-929. https://doi.
org/10.1016/j.procs.2015.09.064

Babu, L. D. D., & Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks in cloud
computing environments. Applied Soft Computing Journal, 13(5), 2292-2303. https://doi.org/10.1016/j.
asoc.2013.01.025

Figure 7. Standard deviation of makespans at different loads

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

50 100 150 200 250 300 350 400 450 500

ST
D

EV
 V

al
ue

Number of Processes

STDEV Greedy
STDEV RR

St
an

da
rd

 d
ev

ia
tio

n
va

lu
e

Greed
Round robin

Number of processes

124 Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

Hanaa Osman, Asma’a Yassin Hammo and Abdulnasir Younus Ahmad

Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., & Moscardelli, L. (2011). Tight bounds for
selfish and greedy load balancing. Algorithmica, 61, 606-637. https://doi.org/10.1007/s00453-010-9427-8

Coady, Y., Hohlfeld, O., Kempf, J., McGeer, R., & Schmid, S. (2015). Distributed cloud computing:
Applications, status quo, and challenges. Computer Communication Review, 45(2), 38-43. https://doi.
org/10.1145/2766330.2766337

Dave, S., & Maheta, P. (2014). Utilizing round robin concept for load balancing algorithm at virtual machine
level in cloud environment. International Journal of Computer Applications, 94(4), 23-29. https://doi.
org/10.5120/16332-5612

Devi, D. C., & Uthariaraj, V. R. (2016). Load balancing in cloud computing environment using improved
weighted round robin algorithm for nonpreemptive dependent tasks. Scientific World Journal, 2016,
Article 3896065. https://doi.org/10.1155/2016/3896065

Fatima, S. G., Fatima, S. K., Sattar, S. A., Khan, N. A., & Adil, S. (2019). Cloud computing and load balancing.
International Journal of Advanced Research in Engineering and Technology, 10(2), 189-209. https://doi.
org/10.34218/IJARET.10.2.2019.019

Goyal, T., Singh, A., & Agrawa, A. (2012). Cloudsim: Simulator for cloud computing infrastructure and
modeling. Procedia Engineering, 38, 3566-3572. https://doi.org/10.1016/j.proeng.2012.06.412

Javadpour, A., Sangaiah, A. K., Pinto, P., Ja’fari, F., Zhang, W., Abadi, A. M. H., & Ahmadi, H. R. (2023).
An energy-optimized embedded load balancing using DVFS computing in cloud data centers. Computer
Communications, 197, 255-266. https://doi.org/10.1016/j.comcom.2022.10.019

Kapoor, S., & Dabas, C. (2015). Cluster based load balancing in cloud computing. In 2015 8th International
Conference on Contemporary Computing, IC3 2015 (pp. 76-81). IEEE Publishing. https://doi.org/10.1109/
IC3.2015.7346656

Kruekaew, B., & Kimpan, W. (2020). Enhancing of artificial bee colony algorithm for virtual machine scheduling
and load balancing problem in cloud computing. International Journal of Computational Intelligence
Systems, 13(1), 496-510. https://doi.org/10.2991/ijcis.d.200410.002

Kruekaew, B., & Kimpan, W. (2022). Multi-objective task scheduling optimization for load balancing in cloud
computing environment using hybrid artificial bee colony algorithm with reinforcement learning. IEEE
Access, 10, 17803-17818. https://doi.org/10.1109/ACCESS.2022.3149955

Kumar, K. P., Ragunathan, T., Vasumathi, D., & Prasad, P. K. (2020). An efficient load balancing technique
based on cuckoo search and firefly algorithm in cloud. International Journal of Intelligent Engineering
and Systems, 13(3), 422-432. https://doi.org/10.22266/IJIES2020.0630.38

Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in cloud computing: A
survey. ACM Computing Surveys, 51(6), Article 120. https://doi.org/10.1145/3281010

Li, G., & Wu, Z. (2019). Ant colony optimization task scheduling algorithm for SWIM based on load balancing.
Future Internet, 11(4), Article 90. https://doi.org/10.3390/fi11040090

Lu, Y., Zhang, J., Wu, S., Zhang, S., Zhang, Y., Li, Y., Ghosh, S., Banerjee, C., Kulkarni, A. K., Annappa, B.,
Domanal, S. G., Reddy, G. R. M., Komarasamy, D., & Muthuswamy, V. (2016). Load balancing in cloud
environment using a novel hybrid scheduling algorithm. In 2015 IEEE International Conference on Cloud

125Pertanika J. Sci. & Technol. 32 (1): 113 - 125 (2024)

An Enhanced Greedy Algorithm for Load Balancing

Computing in Emerging Markets, CCEM 2015 (pp. 37-42). IEEE Publishing. https://doi.org/10.1109/
CCEM.2015.31

Mishra, S. K., Sahoo, B., & Parida, P. P. (2018). Load balancing in cloud computing: A big picture. Journal of
King Saud University - Computer and Information Sciences, 32(2), 149-158. https://doi.org/10.1016/j.
jksuci.2018.01.003

Mohanty, S., Patra, P. K., Ray, M., & Mohapatra, S. (2017). A novel meta-heuristic approach for load balancing
in cloud computing. International Journal of Knowledge-Based Organizations, 8(1), 29-49. https://doi.
org/10.4018/ijkbo.2018010103

Nerkar, M. H. (2012). Cloud computing in distributed system. International Journal of Computer Science and
Informatics, 1(10), 97-101. https://doi.org/10.47893/ijcsi.2012.1072

Paduraru, C. I. (2014). A greedy algorithm for load balancing jobs with deadlines in a distributed network.
International Journal of Advanced Computer Science and Applications, 5(2), 56-59. https://doi.
org/10.14569/ijacsa.2014.050209

Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in cloud computing using
particle swarm optimization. International Journal of Parallel Programming, 42(5), 739-754. https://
doi.org/10.1007/s10766-013-0275-4

Saura, J. R., Herraez, B. R., & Reyes-Menendez, A. (2019). Comparing a traditional approach for financial
brand communication analysis with a big data analytics technique. IEEE Access, 7, 37100-37108. https://
doi.org/10.1109/ACCESS.2019.2905301

Singh, H., Tyagi, S., & Kumar, P. (2021). Cloud resource mapping through crow search inspired metaheuristic
load balancing technique. Computers and Electrical Engineering, 93, Article 107221. https://doi.
org/10.1016/j.compeleceng.2021.107221

Sinha, G., & Sinha, D. (2020). Enhanced weighted round robin algorithm to balance the load for effective
utilization of resource in cloud environment. EAI Endorsed Transactions on Cloud Systems, 6(18), Article
166284. https://doi.org/10.4108/eai.7-9-2020.166284

Sinha, U., & Shekhar, M. (2015). Comparison of various cloud simulation tools available in cloud computing.
International Journal of Advanced Research in Computer and Communication Engineering, 4(3), 171-
176. https://doi.org/10.17148/ijarcce.2015.4342

Tawfeek, M. A., El-Sisi, A., Keshk, A. E., & Torkey, F. A. (2013). Cloud task scheduling based on ant colony
optimization. In 2013 8th International Conference on Computer Engineering & Systems (ICCES) (pp.
64-69). IEEE Publishing. https://doi.org/10.1109/ICCES.2013.6707172

Wang, Y. H., & Wu, I. C. (2009). Achieving high and consistent rendering performance of java AWT/Swing
on multiple platforms. Software - Practice and Experience, 39(7), 701-736. https://doi.org/10.1002/spe

